Skip to main content

Deep-sea bacteria could help neutralize greenhouse gas!!

Deep-sea bacteria could help neutralize greenhouse gas.
Credit: Image courtesy of University of Florida

A type of bacteria plucked from the bottom of the ocean could be put to work neutralizing large amounts of industrial carbon dioxide in the Earth’s atmosphere, a group of University of Florida researchers has found.

Carbon dioxide, a major contributor to the buildup of atmospheric greenhouse gases, can be captured and neutralized in a process known as sequestration. Most atmospheric carbon dioxide is produced from fossil fuel combustion, a waste known as flue gas. But converting the carbon dioxide into a harmless compound requires a durable, heat-tolerant enzyme. That’s where the bacterium studied by UF Health researchers comes into play. The bacterium -- Thiomicrospira crunogena -- produces carbonic anhydrase, an enzyme that helps remove carbon dioxide in organisms.

So what makes the deep-sea bacterium so attractive? It lives near hydrothermal vents, so the enzyme it produces is accustomed to high temperatures. That’s exactly what’s needed for the enzyme to work during the process of reducing industrial carbon dioxide, said Robert McKenna, Ph.D., a professor of biochemistry and molecular biology in the UF College of Medicine, a part of UF Health.

“This little critter has evolved to deal with those extreme temperature and pressure problems. It has already adapted to some of the conditions it would face in an industrial setting,” he said.
The findings by the McKenna group, which included graduate research assistants Brian Mahon and Avni Bhatt, were published recently in the journals Acta Crystallographica D: Biological Crystallography and Chemical Engineering Science.

The chemistry of sequestering works this way: The enzyme, carbonic anhydrase, catalyzes a chemical reaction between carbon dioxide and water. The carbon dioxide interacts with the enzyme, converting the greenhouse gas into bicarbonate. The bicarbonate can then be further processed into products such as baking soda and chalk.

In an industrial setting, the UF researchers believe the carbonic anhydrase could be captured this way: The carbonic anhydrase would be immobilized with solvent inside a reactor vessel that serves as a large purification column. Flue gas would be passed through the solvent, with the carbonic anhydrase converting the carbon dioxide into bicarbonate.

Neutralizing industrial quantities of carbon dioxide can require a significant amount of carbonic anhydrase, so McKenna’s group found a way to produce the enzyme without repeatedly harvesting it from the sea floor. The enzyme can be produced in a laboratory using a genetically engineered version of the common E. coli bacteria. So far, the UF Health researchers have produced several milligrams of the carbonic anhydrase, though Bhatt said much larger quantities would be needed to neutralize carbon dioxide on an industrial scale.

That’s just one of the challenges researchers face before the enzyme could be put to use against carbon dioxide in real-world settings. While it has good heat tolerance, the enzyme studied by McKenna’s team isn’t particularly efficient.

“You want it to do the reaction faster and more efficiently,” Bhatt said. “The fact that it has such a high thermal stability makes it a good candidate for further study.”

Ideally, Bhatt said, more research will produce a variant of the enzyme that is both heat-tolerant and fast-acting enough that it can be used in industrial settings. Next, they want to study ways to increase the enzyme’s stability and longevity, which are important issues to be addressed before the enzyme could be put into widespread industrial use.

While carbonic anhydrase’s ability to neutralize carbon dioxide has been widely studied by McKenna and other scientists around the world for some time, finding the best enzyme and putting it to work in an efficient and affordable carbon sequestration system has been challenging. Still, McKenna said he is encouraged by the prospect of discoveries that could ultimately benefit the planet.

“It shows that it’s physically possible to take known enzymes such as carbonic anhydrase and utilize them to pull carbon dioxide out of flue gas,” he said.

The study was funded by grant GM25154 from the National Institutes of Health and grant NSF-MCB-0643713 from the National Science Foundation.

Video descriptionhttps://www.youtube.com/watch?v=Zk_u3OrxWZQ

Source:  University of Florida. | By: Doug Bennett.

Popular posts from this blog

Gene therapy treats all muscles in the body in muscular dystrophy dogs

Human clinical trials are next step..
Source: www.healthcare.uiowa.edu
Muscular dystrophy, which affects approximately 250,000 people in the U.S., occurs when damaged muscle tissue is replaced with fibrous, fatty or bony tissue and loses function. For years, scientists have searched for a way to successfully treat the most common form of the disease, Duchenne Muscular Dystrophy (DMD), which primarily affects boys. Now, a team of University of Missouri researchers have successfully treated dogs with DMD and say that human clinical trials are being planned in the next few years.

"This is the most common muscle disease in boys, and there is currently no effective therapy," said Dongsheng Duan, the study leader and the Margaret Proctor Mulligan Professor in Medical Research at the MU School of Medicine. "This discovery took our research team more than 10 years, but we believe we are on the cusp of having a treatment for the disease."

Patients with Duchenne muscular dyst…

New articles for vol 3 (2015) and Issue 2 will be published soon

Visit: www.biohelikon.org and submit your article for 2nd Issue of Biohelikon.
Upcoming Articles:

Anti-Idiotype Antibody against Pre-Membrane-Specific Antibody as an Adjunct to Current Dengue Vaccination Strategy By Andrew W. Taylor-Robinson

Dengue is a rapidly emerging vector-borne viral disease of humans transmitted by mosquitoes of the genus Aedes. Dengue viruses are divided into five antigenically distinct serotypes, DENV-1 to -5. The disease is endemic in over 130 countries, placing almost half of the world’s population at risk. Clinical disease presents as either a mild self-limiting infection or severe complications. Recovery from primary infection by one serotype provides life-long immunity against reinfection by that particular serotype whereas with subsequent infections by other serotypes the risk of developing severe dengue is increased. In contrast to previous understanding that immature dengue virus particles are non-infective it was shown recently that they become highly…

Schizophrenia symptoms linked to features of brain's anatomy?

Roger Harris/Photo Researchers, ISM/Phototake Using advanced brain imaging, researchers have matched certain behavioral symptoms of schizophrenia to features of the brain's anatomy. The findings, at Washington University School of Medicine in St. Louis, could be a step toward improving diagnosis and treatment of schizophrenia.
The study, available online in the journal NeuroImage, will appear in print Oct. 15.

"By looking at the brain's anatomy, we've shown there are distinct subgroups of patients with a schizophrenia diagnosis that correlates with symptoms," said senior investigator C. Robert Cloninger, MD, PhD, the Wallace Renard Professor of Psychiatry and a professor of genetics. "This gives us a new way of thinking about the disease. We know that not all patients with schizophrenia have the same issues, and this helps us understand why."

The researchers evaluated scans taken with magnetic resonance imaging (MRI) and a technique called diffusion ten…