Skip to main content

Elephant Genetics may guide to fight cancer in human..!!

As dozens of circus elephants prepare to retire at a Central Florida preserve, researches are studying their genes believed to the key to the species' low incidence of cancer.


video
Source: Reuters - Innovations Video Online 

Why elephants rarely get cancer?


Potential mechanism identified that may be key to cancer resistance.

A new study could explain why elephants rarely get cancer. The results show that elephants have extra copies of a gene encoding a tumor suppressor, p53. Further, elephants may have a more robust mechanism for killing damaged cells at risk for becoming cancerous. The findings suggest extra p53 could explain elephants' enhanced cancer resistance.

(L) Cartoon representation of a complex between DNA and the protein p53 (Cho et al. Science 265 pp. 346,1994)
(R) Crystal structure of four p53 DNA binding domains (found in the bioactive homo-tetramer) attand has seven domains
(B) A schematic of the known protein domains in p53. (NLS = Nuclear Localization Signal). Credit: RaihaT 

Why elephants rarely get cancer is a mystery that has stumped scientists for decades. A study led by researchers at Huntsman Cancer Institute (HCI) at the University of Utah and Arizona State University, and including researchers from the Ringling Bros. Center for Elephant Conservation, may have found the answer.

According to the results, published in the Journal of the American Medical Association (JAMA), and determined over the course of several years and a unique collaboration between HCI, Primary Children's Hospital, Utah's Hogle Zoo, and the Ringling Bros. Center for Elephant Conservation, elephants have 38 additional modified copies (alleles) of a gene that encodes p53, a well-defined tumor suppressor, as compared to humans, who have only two. Further, elephants may have a more robust mechanism for killing damaged cells that are at risk for becoming cancerous. In isolated elephant cells, this activity is doubled compared to healthy human cells, and five times that of cells from patients with Li-Fraumeni Syndrome, who have only one working copy of p53 and more than a 90 percent lifetime cancer risk in children and adults. The results suggest extra p53 could explain elephants' enhanced resistance to cancer.

"Nature has already figured out how to prevent cancer. It's up to us to learn how different animals tackle the problem so we can adapt those strategies to prevent cancer in people," says co-senior author Joshua Schiffman, M.D., pediatric oncologist at Huntsman Cancer Institute, University of Utah School of Medicine, and Primary Children's Hospital.

According to Schiffman, elephants have long been considered a walking conundrum. Because they have 100 times as many cells as people, they should be 100 times more likely to have a cell slip into a cancerous state and trigger the disease over their long life span of 50 to 70 years. And yet it's believed that elephants get cancer less often, a theory confirmed in this study. Analysis of a large database of elephant deaths estimates a cancer mortality rate of less than 5 percent compared to 11 to 25 percent in people.

In search of an explanation, the scientists combed through the African elephant genome and found at least 40 copies of genes that code for p53, a protein well known for its cancer-inhibiting properties. DNA analysis provides clues as to why elephants have so many copies, a substantial increase over the two found in humans. The vast majority, 38 of them, are so-called retrogenes, modified duplicates that have been churned out over evolutionary time.

Schiffman's team collaborated with Utah's Hogle Zoo and Ringling Bros. Center for Elephant Conservation to test whether the extra gene copies may protect elephants from cancer. They extracted white blood cells from blood drawn from the animals during routine wellness checks and subjected the cells to treatments that damage DNA, a cancer trigger. In response, the cells reacted to damage with a characteristic p53-mediated response: they committed suicide.

"It's as if the elephants said, 'It's so important that we don't get cancer, we're going to kill this cell and start over fresh,'" says Schiffman. "If you kill the damaged cell, it's gone, and it can't turn into cancer. This may be more effective of an approach to cancer prevention than trying to stop a mutated cell from dividing and not being able to completely repair itself."

With respect to cancer, patients with inherited Li-Fraumeni Syndrome are nearly the opposite of elephants. They have just one active copy of p53 and more than a 90 percent lifetime risk for cancer. Less p53 decreases the DNA damage response in patients with Li-Fraumeni Syndrome, and Schiffman's team wondered if more p53 could protect against cancer in elephants by heightening the response to damage. To test this, the researchers did a side-by-side comparison with cells isolated from elephants (n=8), healthy humans (n=10), and from patients with Li-Fraumeni Syndrome (n=10). They found that elephant cells exposed to radiation self-destruct at twice the rate of healthy human cells and more than five times the rate of Li-Fraumeni cells (14.6%, 7.2%, and 2.7%, respectively). These findings support the idea that more p53 offers additional protection against cancer.

"By all logical reasoning, elephants should be developing a tremendous amount of cancer, and in fact, should be extinct by now due to such a high risk for cancer," says Schiffman. "We think that making more p53 is nature's way of keeping this species alive." Additional studies will be needed to determine whether p53 directly protects elephants from cancer.

"Twenty years ago, we founded the Ringling Bros. Center for Elephant Conservation to preserve the endangered Asian elephant for future generations. Little did we know then that they may hold the key to cancer treatment," said Kenneth Feld, Chairman and CEO of Feld Entertainment.

"The incredible bond our staff has with these majestic animals, and the hands-on care provided at the Center for Elephant Conservation, allows us to easily provide the blood samples Dr. Schiffman needs to further his research," said Alana Feld, executive vice president of Feld Entertainment and producer of Ringling Bros. and Barnum & Bailey. "We look forward to the day when there is a world with more elephants and less cancer."

The elephant story represents one way that evolution may have overcome cancer. Other evidence suggests that naked mole rats and bowhead whales have evolved different approaches to the problem. Schiffman plans to use what he's learned in elephants as a strategy for developing novel cancer-fighting therapies.

Schiffman and co-authors, Lisa Abegglen, Ashley Chan, Kristy Lee, Rosann Robinson, Michael Campbell, and Srividya Bhaskara are from Huntsman Cancer Institute and the University of Utah, Aleah Caulin and Shane Jensen are from the University of Pennsylvania, Wendy Kiso and Dennis Schmitt are from the Ringling Bros. Center for Elephant Conservation, Peter Waddell is from the Ronin Institute in West Lafayette, Indiana, and Carlo Maley, senior co-author, is from Arizona State University. Also contributing to the research was Eric Peterson, elephant manager at Utah's Hogle Zoo.

"Participating in the research is not only amazing but a win-win for humans and elephants," said Peterson. "If elephants can hold the key to unlocking some of the mysteries of cancer, then we will see an increased awareness of the plight of elephants worldwide. What a fantastic benefit: elephants and humans living longer, better lives."

"The animal kingdom undoubtedly holds information that could help lead to cures for many human illnesses," said Craig Dinsmore, executive director, Utah's Hogle Zoo. "The blood samples from our elephants at Utah's Hogle Zoo are aiding Dr. Schiffman in his research, and we are proud to be a part of his ground-breaking work."

Story Source:
>The above post is reprinted from materials provided by University of Utah Health Sciences.
>ScienceDaily.

Journal Reference:

Joshua D. Schiffman, MD et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA, October 2015 DOI: 10.1001/jama.2015.13134

Popular posts from this blog

Gene therapy treats all muscles in the body in muscular dystrophy dogs

Human clinical trials are next step..
Source: www.healthcare.uiowa.edu
Muscular dystrophy, which affects approximately 250,000 people in the U.S., occurs when damaged muscle tissue is replaced with fibrous, fatty or bony tissue and loses function. For years, scientists have searched for a way to successfully treat the most common form of the disease, Duchenne Muscular Dystrophy (DMD), which primarily affects boys. Now, a team of University of Missouri researchers have successfully treated dogs with DMD and say that human clinical trials are being planned in the next few years.

"This is the most common muscle disease in boys, and there is currently no effective therapy," said Dongsheng Duan, the study leader and the Margaret Proctor Mulligan Professor in Medical Research at the MU School of Medicine. "This discovery took our research team more than 10 years, but we believe we are on the cusp of having a treatment for the disease."

Patients with Duchenne muscular dyst…

Schizophrenia symptoms linked to features of brain's anatomy?

Roger Harris/Photo Researchers, ISM/Phototake Using advanced brain imaging, researchers have matched certain behavioral symptoms of schizophrenia to features of the brain's anatomy. The findings, at Washington University School of Medicine in St. Louis, could be a step toward improving diagnosis and treatment of schizophrenia.
The study, available online in the journal NeuroImage, will appear in print Oct. 15.

"By looking at the brain's anatomy, we've shown there are distinct subgroups of patients with a schizophrenia diagnosis that correlates with symptoms," said senior investigator C. Robert Cloninger, MD, PhD, the Wallace Renard Professor of Psychiatry and a professor of genetics. "This gives us a new way of thinking about the disease. We know that not all patients with schizophrenia have the same issues, and this helps us understand why."

The researchers evaluated scans taken with magnetic resonance imaging (MRI) and a technique called diffusion ten…

The Nobel Prize in Chemistry 2015 for "mechanistic studies of DNA repair".

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2015 to Tomas Lindahl Francis Crick Institute and Clare Hall Laboratory, Hertfordshire, UK
Paul Modrich Howard Hughes Medical Institute and Duke University School of Medicine, Durham, NC, USA &
Aziz Sancar University of North Carolina, Chapel Hill, NC, USA
“for Mechanistic Studies of DNA Repair"


The cells’ toolbox for DNA repair The Nobel Prize in Chemistry 2015 is awarded to Tomas Lindahl, Paul Modrich and Aziz Sancar for having mapped, at a molecular level, how cells repair damaged DNA and safeguard the genetic information. Their work has provided fundamental knowledge of how a living cell functions and is, for instance, used for the development of new cancer treatments.

Each day our DNA is damaged by UV radiation, free radicals and other carcinogenic substances, but even without such external attacks, a DNA molecule is inherently unstable. Thousands of spontaneous changes to a cell’s …