Skip to main content

Larger brains do not lead to high IQs, new meta-analysis finds

Is brain size related to cognitive ability of humans? This question has captured the attention of scientists for more than a century. An international team of researchers provides no evidence for a causal role of brain size for IQ test performance. In a meta-analysis of data from more than 8000 participants, they show that associations between in vivo brain volume and IQ are small.

Brain scans (stock image). Credit: © nimon_t / Fotolia

As early as 1836, the German physiologist and anatomist Friedrich Tiedemann, in an article in the Philosophical Transactions, expressed his opinion that "there is undoubtedly a connection between the absolute size of the brain and the intellectual powers and functions of the mind." With the advent of brain imaging methods (e.g., MRI, PET), reliable assessments of in-vivo brain volume and investigations of its association with IQ are now possible.

Now, an international team of researchers, led by University of Vienna researchers Jakob Pietschnig, Michael Zeiler, and Martin Voracek from the Faculty of Psychology, together with Lars Penke (University of Göttingen) and Jelte Wicherts (Tilburg University), published a meta-analysis examining correlations between in-vivo brain volume and IQ in Neuroscience and Biobehavioral Reviews. Based on the data from 148 samples comprising over 8000 participants, they report a robust but weak association between brain size and IQ. This association appeared to be independent of participant sex and age.

"The presently observed association means that brain volume plays only a minor role in explaining IQ test performance in humans. Although a certain association is observable, brain volume appears to be of only little practical relevance. Rather, brain structure and integrity appear to be more important as a biological foundation of IQ, whilst brain size works as one of many compensatory mechanisms of cognitive functions," explains Jakob Pietschnig from the Institute of Applied Psychology of the University of Vienna.

Brain structure vs. brain size

The importance of brain structure compared to brain volume becomes already evident when comparing different species. When considering absolute brain size, the sperm whale weighs in with the largest central nervous system. When controlling for body mass, the shrew is on the top of the list. Similar results emerge when considering other aspects of species anatomy: Homo sapiens never appears at the top at the list, as would be expected. Rather, differences in brain structure appear to be mainly responsible for between-species differences in cognitive performance.

Within Homo sapiens, there are indications that render a large association between IQ and brain volume similarly questionable. For instance, differences in brain size between men and women are well-established, yielding larger brains of men compared to women. However, there are no differences in global IQ test performance between men and women. Another example are individuals with megalencephaly syndrome (enlarged brain volume) who typically show lower IQ test performance than the average population. "Therefore, structural aspects appear to be more important for cognitive performance within humans as well," concludes Jakob Pietschnig.

Source:
University of Vienna | ScienceDaily

Reference:
Jakob Pietschnig, Lars Penke, Jelte M. Wicherts, Michael Zeiler, Martin Voracek. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience and Biobehavioral Reviews, 2015; DOI: 10.1016/j.neubiorev.2015.09.017

Popular posts from this blog

Gene therapy treats all muscles in the body in muscular dystrophy dogs

Human clinical trials are next step..
Source: www.healthcare.uiowa.edu
Muscular dystrophy, which affects approximately 250,000 people in the U.S., occurs when damaged muscle tissue is replaced with fibrous, fatty or bony tissue and loses function. For years, scientists have searched for a way to successfully treat the most common form of the disease, Duchenne Muscular Dystrophy (DMD), which primarily affects boys. Now, a team of University of Missouri researchers have successfully treated dogs with DMD and say that human clinical trials are being planned in the next few years.

"This is the most common muscle disease in boys, and there is currently no effective therapy," said Dongsheng Duan, the study leader and the Margaret Proctor Mulligan Professor in Medical Research at the MU School of Medicine. "This discovery took our research team more than 10 years, but we believe we are on the cusp of having a treatment for the disease."

Patients with Duchenne muscular dyst…

Schizophrenia symptoms linked to features of brain's anatomy?

Roger Harris/Photo Researchers, ISM/Phototake Using advanced brain imaging, researchers have matched certain behavioral symptoms of schizophrenia to features of the brain's anatomy. The findings, at Washington University School of Medicine in St. Louis, could be a step toward improving diagnosis and treatment of schizophrenia.
The study, available online in the journal NeuroImage, will appear in print Oct. 15.

"By looking at the brain's anatomy, we've shown there are distinct subgroups of patients with a schizophrenia diagnosis that correlates with symptoms," said senior investigator C. Robert Cloninger, MD, PhD, the Wallace Renard Professor of Psychiatry and a professor of genetics. "This gives us a new way of thinking about the disease. We know that not all patients with schizophrenia have the same issues, and this helps us understand why."

The researchers evaluated scans taken with magnetic resonance imaging (MRI) and a technique called diffusion ten…

The Nobel Prize in Chemistry 2015 for "mechanistic studies of DNA repair".

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2015 to Tomas Lindahl Francis Crick Institute and Clare Hall Laboratory, Hertfordshire, UK
Paul Modrich Howard Hughes Medical Institute and Duke University School of Medicine, Durham, NC, USA &
Aziz Sancar University of North Carolina, Chapel Hill, NC, USA
“for Mechanistic Studies of DNA Repair"


The cells’ toolbox for DNA repair The Nobel Prize in Chemistry 2015 is awarded to Tomas Lindahl, Paul Modrich and Aziz Sancar for having mapped, at a molecular level, how cells repair damaged DNA and safeguard the genetic information. Their work has provided fundamental knowledge of how a living cell functions and is, for instance, used for the development of new cancer treatments.

Each day our DNA is damaged by UV radiation, free radicals and other carcinogenic substances, but even without such external attacks, a DNA molecule is inherently unstable. Thousands of spontaneous changes to a cell’s …