Skip to main content

Schizophrenia symptoms linked to features of brain's anatomy?

Roger Harris/Photo Researchers, ISM/Phototake

Using advanced brain imaging, researchers have matched certain behavioral symptoms of schizophrenia to features of the brain's anatomy. The findings, at Washington University School of Medicine in St. Louis, could be a step toward improving diagnosis and treatment of schizophrenia.


The study, available online in the journal NeuroImage, will appear in print Oct. 15.

"By looking at the brain's anatomy, we've shown there are distinct subgroups of patients with a schizophrenia diagnosis that correlates with symptoms," said senior investigator C. Robert Cloninger, MD, PhD, the Wallace Renard Professor of Psychiatry and a professor of genetics. "This gives us a new way of thinking about the disease. We know that not all patients with schizophrenia have the same issues, and this helps us understand why."

The researchers evaluated scans taken with magnetic resonance imaging (MRI) and a technique called diffusion tensor imaging in 36 healthy volunteers and 47 people with schizophrenia. The scans of patients with schizophrenia revealed various abnormalities in portions of the corpus callosum, a bundle of fibers that connects the left and right hemispheres of the brain and is considered critical to neural communication.

When the researchers looked at abnormalities across the corpus callosum, they found that certain characteristics revealed in the brain scans matched specific symptoms of schizophrenia. For example, patients with specific features in one part of the corpus callosum typically displayed bizarre and disorganized behavior. In other patients, irregularities in a different part of that structure were associated with disorganized thinking and speech and symptoms such as a lack of emotion. Other brain abnormalities in the corpus callosum were associated with delusions or hallucinations.

In 2014, the same team of researchers reported evidence suggesting that schizophrenia is not a single disease but a group of eight genetically distinct disorders, each with its own set of symptoms. In that study, Cloninger and Igor Zwir, PhD, an instructor in psychiatry at Washington University and an associate professor in the Department of Computer Science and Artificial Intelligence at the University of Granada, Spain, found that distinct sets of genes were strongly associated with particular clinical symptoms.

The current study provides further evidence that schizophrenia is a heterogeneous group of disorders rather than a single disorder. The researchers believe it will be important for future studies to focus on how precise gene networks are linked to specific brain features and individual symptoms so that treatments can be tailored to patients. Currently, therapies for schizophrenia tend to be more all-encompassing, regardless of an individual patient's symptoms.

In analyzing the clusters of genes and the brain scans, the researchers developed a complex method of analysis, similar to what companies such as Netflix use to predict movies that viewers might want to stream.

"We didn't start with people who had certain symptoms and then look to see whether they had corresponding abnormalities in the brain," Zwir said. "We just looked at the data, and these patterns began to emerge. This kind of granular information, combined with data about the genetics of schizophrenia, one day will help physicians treat the disorder in a more precise way."

Source:
Washington University School of Medicine  | by Jim Dryden
ScienceDaily

Reference:
Javier Arnedo, Daniel Mamah, David A. Baranger, Michael P. Harms, Deanna M. Barch, Dragan M. Svrakic, Gabriel A. de Erausquin, C. Robert Cloninger, Igor Zwir. Decomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropy. NeuroImage, 2015; 120: 43 DOI: 10.1016/j.neuroimage.2015.06.083

Popular posts from this blog

Gene therapy treats all muscles in the body in muscular dystrophy dogs

Human clinical trials are next step..
Source: www.healthcare.uiowa.edu
Muscular dystrophy, which affects approximately 250,000 people in the U.S., occurs when damaged muscle tissue is replaced with fibrous, fatty or bony tissue and loses function. For years, scientists have searched for a way to successfully treat the most common form of the disease, Duchenne Muscular Dystrophy (DMD), which primarily affects boys. Now, a team of University of Missouri researchers have successfully treated dogs with DMD and say that human clinical trials are being planned in the next few years.

"This is the most common muscle disease in boys, and there is currently no effective therapy," said Dongsheng Duan, the study leader and the Margaret Proctor Mulligan Professor in Medical Research at the MU School of Medicine. "This discovery took our research team more than 10 years, but we believe we are on the cusp of having a treatment for the disease."

Patients with Duchenne muscular dyst…

Study adds to evidence that viruses are alive

The new findings appear in the journal Science Advances.

A new analysis supports the hypothesis that viruses are living entities that share a long evolutionary history with cells, researchers report. The study offers the first reliable method for tracing viral evolution back to a time when neither viruses nor cells existed in the forms recognized today, the researchers say.

Until now, viruses have been difficult to classify, said University of Illinois crop sciences and Carl R. Woese Institute for Genomic Biology professor Gustavo Caetano-Anoll├ęs, who led the new analysis with graduate student Arshan Nasir. In its latest report, the International Committee on the Taxonomy of Viruses recognized seven orders of viruses, based on their shapes and sizes, genetic structure and means of reproducing.

"Under this classification, viral families belonging to the same order have likely diverged from a common ancestral virus," the authors wrote. "However, only 26 (of 104) viral fam…